By Topic

Spectral resolution requirements for mapping urban areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Herold, M. ; Remote Sensing Res. Unit, California Univ., Santa Barbara, CA, USA ; Gardner, M.E. ; Roberts, D.A.

This study evaluated how spectral resolution of high-spatial resolution optical remote sensing data influences detailed mapping of urban land cover. A comprehensive regional spectral library and low altitude data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were used to characterize the spectral properties of urban land cover. The Bhattacharyya distance was applied as a measure of spectral separability to determine a most suitable subset of 14 AVIRIS bands for urban mapping. We evaluated the performance of this spectral setting versus common multispectral sensors such as Ikonos by assessing classification accuracy for 26 urban land cover classes. Significant limitations for current multispectral sensors were identified, where the location and broadband character of the spectral bands only marginally resolved the complex spectral characteristics of the urban environment, especially for built surface types. However, the AVIRIS classification accuracy did not exceed 66.6% for 22 urban cover types, primarily due to spectral similarities of specific urban materials and high within-class variability.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 9 )