Cart (Loading....) | Create Account
Close category search window
 

Improving energy saving in wireless systems by using dynamic power management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiasserini, C. ; Dipt. di Elettronica, Politecnico di Torino, Italy ; Rao, R.R.

We develop a novel approach for conserving energy in battery-powered communication devices. There are two salient aspects to this approach. First, the battery-powered devices move through multiple, progressively deeper, sleep states in a predictable manner. Nodes in deeper sleep states consume lower energy while asleep, but incur a longer delay and higher energy cost to awaken. Second, the nodes are woken up on demand through a paging signal. To awaken nodes that are in deep sleep, the paging signal has to be decoded using very low power circuits such as those used in radio frequency tags. To accommodate this need, in a manner that scales well with the number of nodes, the number of distinct paging signals has to be much less than the number of possible nodes. This is accomplished through a group-based wakeup scheme, which initially awakens the targeted node along with a number of other similarly disposed nodes that subsequently return to their original sleep state. Tradeoffs among energy consumption, delay and overhead are presented; comparisons with other protocols show the potential for 16% to 50% improvement in energy consumption.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:2 ,  Issue: 5 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.