Cart (Loading....) | Create Account
Close category search window
 

Local minima-based exploration for off-lattice protein folding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keum, E.S., Jr. ; Connecticut Univ., Storrs, CT, USA ; Kim, K.J. ; Santos, E.

We present a new and simple algorithmic approach to help predict protein structures from amino acid sequences based on energy minimization. In the search for the minimal energy conformation, we analyze and exploit the protein structures found at the various local minima to direct the search the global minimum. As such, we explore the energy landscape efficiently by considering only the space of local minima instead of the whole feasible space of conformations. Our specific algorithmic approach is comprised of two different elements: local minimization and operators from genetic algorithms. Unlike existing hybrid approaches where the local optimization is used to fine-tune the solutions, we focus primarily on the local optimization and employ stochastic sampling through genetic operators for diversification. Our empirical results indicate that each local minimum is representative of the substructures contained in the set of solutions surrounding the local minima. We applied our approach to determining the minimal energy conformation of proteins from the protein data bank (PDB) using the CHARMM and UNRES energy model. We compared against standard genetic algorithms and Monte Carlo approaches as well as the conformations found in the PDB as the baseline. In all cases, our new approach computed the lowest energy conformation.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.