Cart (Loading....) | Create Account
Close category search window
 

A block coding method that leads to significantly lower entropy values for the proteins and coding sections of Haemophilus influenzae

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sampath, G. ; Dept. of Comput. Sci., Coll. of New Jersey, Ewing, NJ, USA

A simple statistical block code in combination with the LZW-based compression utilities gzip and compress has been found to increase by a significant amount the level of compression possible for the proteins encoded in Haemophilus influenzae, the first fully sequenced genome. The method yields an entropy value of 3.665 bits per symbol (bps), which is 0.657 bps below the maximum of 4.322 bps and an improvement of 0.452 bps over the best known to date of 4.118 bps using Matsumoto, Sadakane, and Imai's Iza-CTW algorithm. Calculations based on a compact inverse genetic code show that the genome has a maximum entropy of 1.757 bps for the coding regions, with a possibly lower actual entropy. These results hint at the existence of hitherto unexplored redundancies that do not show up in Markov models and are indicative of more internal structure than suspected in both the protein and the genome.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.