By Topic

Spectral clustering of protein sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Paccanaro ; Dept. of Med. Microbiol., Queen Mary Univ. of London, UK ; C. Chennubhotla ; J. A. Casbon ; M. A. S. Saqi

A major challenge in bioinformatics is the grouping together of protein sequences into functionally similar families. Large scale clustering of protein sequences may help to identify novel relationships and may also be of use in structural genomics. This paper explores the use of graph-theoretic spectral methods for clustering protein sequences. Using the leading eigenvectors of a matrix derived from similarity information between protein sequences, we were able to obtain meaningful clusters on quite diverse sets of proteins. The results presented show how this method is often able to identify correctly the superfamilies to which the sequences belong.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003