By Topic

Transductive support vector machines for classification of microarray gene expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Semolini, R. ; Dept. of Comput. Eng. & Ind. Autom., State Univ. of Campinas, Brazil ; Von Zuben, F.J.

The purpose of this paper is to introduce transductive inference with support vector machines (TSVM) as a powerful methodology for classification of gene expression data, using training and prediction data sets. The following classification problems will be considered: determination of cancer diagnosis categories and classification of genes from the budding yeast Saccharomyces cerevisiae in functional groups. In the case of training samples, experts have already classified the samples in their respective classes. So, given each prediction sample, the purpose is to determine its corresponding class. The main aspect of TSVM is that the classification task will be implemented in just one step, improving the generalization capability of the classifier. The TSVM will be compared with the traditional inductive method (SVM) in a series of experiments concerning the two classification problems, with promising results.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003