By Topic

Non-information-maximizing neural coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stiber, M. ; Comput. & Software Syst., Univ. of Washington, Bothell, WA, USA

Information theoretic techniques are often used to investigate neural coding. Results - in terms of bits per second or bits per spike - have been used as evidence to support temporal or rate coding, spike timing precision, etc. Despite its use this way, information theory does not tell one what the neural code (or any code) is. In artificial systems, codes are often purposefully made sub-optimal from a pure information density point of view. This work tests the feasibility of a neural code containing error correction characteristics which uses greater spike timing precision than might be necessary to simply transmit a given amount of information. A model of the recognized prototype of an inhibitory synapse shows that, even compared to small input imprecision and in the presence of robust dynamical behaviors, high timing precision can enable error correction.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003