By Topic

SVM incremental learning, adaptation and optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Diehl, C.P. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Cauwenberghs, G.

The objective of machine learning is to identify a model that yields good generalization performance. This involves repeatedly selecting a hypothesis class, searching the hypothesis class by minimizing a given objective function over the model's parameter space, and evaluating the generalization performance of the resulting model. This search can be computationally intensive as training data continuously arrives, or as one needs to tune hyperparameters in the hypothesis class and the objective function. In this paper, we present a framework for exact incremental learning and adaptation of support vector machine (SVM) classifiers. The approach is general and allows one to learn and unlearn individual or multiple examples, adapt the current SVM to changes in regularization and kernel parameters, and evaluate generalization performance through exact leave-one-out error estimation.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003