By Topic

A CMOS 3.5 Gbps continuous-time adaptive cable equalizer with joint adaptation method of low-frequency gain and high-frequency boosting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jong-Sang Choi ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Moon-Sang Hwang ; Deog-Kyoon Jeong

This paper describes a high-speed CMOS adaptive cable equalizer with the joint adaptation method of low-frequency gain and high-frequency boosting. The adaptation method compares not only the high-frequency contents but also the low-frequency contents. By this joint adaptation method, the adaptation inaccuracy due to amplitude deviation can be reduced. The filter cell in the equalizer uses the variable-capacitor tuning and feed-forward common-mode-voltage biasing technique to achieve high bandwidth. The prototype chip is fabricated in a 0.18 /spl mu/m mixed-mode CMOS process. The realized active area is 0.48 mm/spl times/0.73 mm. The filter cell operates up to 5 Gbps and the adaptive equalizer operates up to 3.5 Gbps over a 15-m RG-58 coaxial cable with a 1.8 V supply and 80 mW power dissipation.

Published in:

VLSI Circuits, 2003. Digest of Technical Papers. 2003 Symposium on

Date of Conference:

12-14 June 2003