By Topic

Optimal sweeping paths on a 2-manifold: a new class of optimization problems defined by path structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taejung Kim ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Sarma, Sanjay E.

We introduce a class of path optimization problems, which we call "sweeping path problems," found in a wide range of engineering applications. The question is how to find a family of curve segments on a free-form surface that optimizes a certain objective or a cost while respecting specified constraints. For example, when machining a free-form surface, we must ensure that the surface can be machined or swept as quickly as possible while respecting a given geometric tolerance, and while satisfying the speed and the acceleration limits of the motors. The basic requirement of engineering tasks of this type is to "visit" or "cover" an entire area, whereas conventional optimal control theory is largely about point-to-point control. Standard ordinary differential equation-based Lagrangian description formulations are not suitable for expressing or managing optimization problems of this type. We introduce a framework using an Eulerian description method, which leads to partial differential equations. We show that the basic requirement is expressed naturally in this formulation. After defining the problem, we show the connection between the two perspectives. Using this reasoning, we develop the necessary conditions for the optimality of the problem. Finally, we discuss computational approaches for solving the problem.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:19 ,  Issue: 4 )