Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Unified approach for constructing multiwavelets with approximation order using refinable super-functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ozkaramanli, H. ; Dept. of Electr. & Electron. Eng., Eastern Mediterranean Univ., Magosa, Turkey

A unified approach for constructing a large class of multiwavelets is presented. This class includes Geronimo-Hardin-Massopust (1994), Alpert (1993), finite element and Daubechies-like multiwavelets. The approach is based on the characterisation of approximation order of r multiscaling functions using a known compactly supported refinable super-function. The characterisation is formulated as a generalised eigenvalue equation. The generalised left eigenvectors of the finite down-sampled convolution matrix Lf give the coefficients in the finite linear combination of multiscaling functions that produce the desired super-function. The unified approach based on the super-function theory can be used to construct new multiwavelets with short support, high approximation order and symmetry.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:150 ,  Issue: 3 )