Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the construction and training of reformulated radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karayiannis, N.B. ; Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA ; Randolph-Gips, M.M.

Presents a systematic approach for constructing reformulated radial basis function (RBF) neural networks, which was developed to facilitate their training by supervised learning algorithms based on gradient descent. This approach reduces the construction of radial basis function models to the selection of admissible generator functions. The selection of generator functions relies on the concept of the blind spot, which is introduced in the paper. The paper also introduces a new family of reformulated radial basis function neural networks, which are referred to as cosine radial basis functions. Cosine radial basis functions are constructed by linear generator functions of a special form and their use as similarity measures in radial basis function models is justified by their geometric interpretation. A set of experiments on a variety of datasets indicate that cosine radial basis functions outperform considerably conventional radial basis function neural networks with Gaussian radial basis functions. Cosine radial basis functions are also strong competitors to existing reformulated radial basis function models trained by gradient descent and feedforward neural networks with sigmoid hidden units.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 4 )