By Topic

Use of the evoked potential P3 component for control in a virtual apartment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bayliss, J.D. ; Univ. of Rochester, NY, USA

Virtual reality (VR) may prove useful for training individuals to use a brain-computer interface (BCI). It could provide complex and controllable experimental environments during BCI research and development as well as increase user motivation. In the study reported here, we examined the robustness of the evoked potential P3 component in virtual and nonvirtual environments. We asked subjects to control several objects or commands in a virtual apartment. Our results indicate that there are no significant differences in the P3 signal between subjects performing a task while immersed in VR versus subjects looking at a computer monitor. This indicates the robustness of the P3 signal over different environments. For an online control task, the performance in a VR environment was not significantly different from performance when looking at a computer monitor. There was, however, a more significant result when the subject's head view of the virtual world was fixed (p < 0.05) when compared with looking at a computer monitor. We also found that subjects' self-reported qualitative experiences did not necessarily match their objective performance. Six out of nine subjects liked the VR environment better, but only one of these subjects performed the best in this environment. The possible ramifications of this, as well as plans for future work, are discussed.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )