By Topic

Parallel ROLAP data cube construction on shared-nothing multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Chen ; Dalhousie Univ., Halifax, NS, Canada ; F. Dehne ; T. Eavis ; A. Rau-Chaplin

The pre-computation of data cubes is critical to improving the response time of on-line analytical processing (OLAP) systems and can be instrumental in accelerating data mining tasks in large data warehouses. In order to meet the need for improved performance created by growing data sizes, parallel solutions for generating the data cube are becoming increasingly important. The paper presents a parallel method for generating data cubes on a shared-nothing multiprocessor. Since no (expensive) shared disk is required, our method can be used on low cost Beowulf style clusters consisting of standard PCs with local disks connected via a data switch. Our approach uses a ROLAP representation of the data cube where views are stored as relational tables. This allows for tight integration with current relational database technology. We have implemented our parallel shared-nothing data cube generation method and evaluated it on a PC cluster, exploring relative speedup, local vs. global schedule trees, data skew, cardinality of dimensions, data dimensionality, and balance tradeoffs. For an input data set of 2000000 rows (72 Megabytes), our parallel data cube generation method achieves close to optimal speedup; generating a full data cube of ≈227 million rows (5.6 Gigabytes) on a 16 processors cluster in under 6 minutes. For an input data set of 10,000,000 rows (360 Megabytes), our parallel method, running on a 16 processor PC cluster, created a data cube consisting of ≈846 million rows (21.7 Gigabytes) in under 47 minutes.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003