By Topic

Estimating the photorealism of images: distinguishing paintings from photographs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cutzu, F. ; Dept. of Comput. Sci., Indiana Univ., Bloomington, IN, USA ; Hammoud, R. ; Leykin, A.

Automatic classification of an image as a photograph of a real-scene or as a painting is potentially useful for image retrieval and Web site filtering applications. The main contribution of the paper is the proposition of several features derived from the color, edge, and gray-scale-texture information of the image that effectively discriminate paintings from photographs. For example, we found that paintings contain significantly more pure-color edges, and that certain gray-scale-texture measurements (mean and variance of Gabor filters) are larger for photographs. Using a large set of images (12000) collected from different Web sites, the proposed features exhibit very promising classification performance (over 90%). A comparative analysis of the automatic classification results and psychophysical data is reported, suggesting that the proposed automatic classifier estimates the perceptual photorealism of a given picture.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003