Cart (Loading....) | Create Account
Close category search window
 

Mean-shift blob tracking through scale space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Collins, R.T. ; Carnegie Mellon Univ., Pittsburgh, PA, USA

The mean-shift algorithm is an efficient technique for tracking 2D blobs through an image. Although the scale of the mean-shift kernel is a crucial parameter, there is presently no clean mechanism for choosing or updating scale while tracking blobs that are changing in size. We adapt Lindeberg's (1998) theory of feature scale selection based on local maxima of differential scale-space filters to the problem of selecting kernel scale for mean-shift blob tracking. We show that a difference of Gaussian (DOG) mean-shift kernel enables efficient tracking of blobs through scale space. Using this kernel requires generalizing the mean-shift algorithm to handle images that contain negative sample weights.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.