By Topic

SODA: a service-on-demand architecture for application service hosting utility platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuxian Jiang ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Dongyan Xu

The grid is realizing the vision of providing computation as utility: computational jobs can be scheduled on-demand at grid hosts based on available computational capacity. In this project, we study another emerging usage of grid utility: the hosting of application services. Different from a computational job, an application service such as an e-Laboratory or an on-line business has longer lifetime, and performs multiple jobs requested by its clients. A service hosting utility platform (HUP) is formed by a set of hosts in the grid, and multiple application services will be hosted on the HUP. SODA is a service-on-demand architecture that enables on-demand creation of application services on a HUP. With SODA, an application service will be created in the form of a set of virtual service nodes; each node is a virtual machine which is physically a 'slice' of a real host in the HUP. SODA involves both OS and middleware techniques, and has the following salient capabilities: (1) on-demand service priming: the image of an application service as well as the OS on which it runs will be created on-demand and bootstrapped automatically; (2) better service isolation: services sharing the same HUP host are isolated with respect to administration, faults, intrusion, and resources; (3) integrated service load management: for each service, a service switch will be created to direct client requests to appropriate virtual service nodes. Moreover, the application service provider can replace the default request switching policy with a service-specific policy.

Published in:

High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on

Date of Conference:

22-24 June 2003