By Topic

Building quantum wires: the long and the short of it

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

As quantum computing moves closer to reality the need for basic architectural studies becomes more pressing. Quantum wires, which transport quantum data, is a fundamental component in all anticipated silicon quantum architectures. We introduce a quantum wire architecture based upon quantum teleportation. We compare this teleportation channel with the traditional approach to transporting quantum data, which we refer to as the swapping channel. We characterize the latency and bandwidth of these two alternatives in a device-independent way and describe how the advanced architecture of the teleportation channel overcomes a basic limit to the maximum communication distance of the swapping channel. In addition, we discover a fundamental tension between the scale of quantum effects and the scale of the classical logic needed to control them. This "pitch-matching" problem imposes constraints on minimum wire lengths and wire intersections, which in turn imply a sparsely connected architecture of coarse-grained quantum computational elements. This is in direct contrast to the "sea of gates " architectures presently assumed by most quantum computing studies.

Published in:

Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on

Date of Conference:

9-11 June 2003