By Topic

A new genetic algorithm for nonlinear multiregressions based on generalized Choquet integrals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhenyuan Wang ; Dept. of Math., Nebraska Univ., Omaha, NE, USA ; Hai-Feng Guo

This paper gives a new genetic algorithm for nonlinear multiregression based on generalized Choquet integrals with respect to signed fuzzy measures. Unlike the previous work where the values of the signed fuzzy measure are determined by random search in a genetic algorithm with other regression coefficients together; in this new algorithm, they are determined algebraically and, therefore, its complexity is much lower than before.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003