By Topic

Fuzzy PI control design for an industrial weigh belt feeder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanan Zhao ; Dept. of Mech. Eng., Florida State Univ., Tallahassee, FL, USA ; E. G. Collins

An industrial weigh belt feeder is used to transport solid materials into a manufacturing process at a constant feedrate. It exhibits nonlinear behavior because of motor friction, saturation, and quantization noise in the sensors, which makes standard autotuning methods difficult to implement. The paper proposes and experimentally demonstrates two types of fuzzy logic controllers for an industrial weigh belt feeder. The first type is a PI-like fuzzy logic controller (FLC). A gain scheduled PI-like FLC and a self-tuning PI-like FLC are presented. For the gain scheduled PI-like FLC the output scaling factor of the controller is gain scheduled with the change of setpoint. For the self-tuning PI-like FLC, the output scaling factor of the controller is modified online by an updating factor whose value is determined by a rule base with the error and change of error of the controlled variable as the inputs. A fuzzy PI controller is also presented, where the proportional and integral gains are tuned online based on fuzzy inference rules. Experimental results show the effectiveness of the proposed fuzzy logic controllers. A performance comparison of the three controllers is also given.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:11 ,  Issue: 3 )