By Topic

A physical scattering model for MIMO macrocellular broadband wireless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oestges, C. ; Microwave Lab., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium ; Erceg, V. ; Paulraj, A.J.

This paper presents a physical scattering model that predicts multiple-input multiple-output (MIMO) channel characteristics conforming well to experimental observations in macrocells. Our approach is to start with a given single-input single-output power-delay profile (defined for specific range, bandwidth and antenna parameters) and fit a scattering model that characterizes the MIMO channel. From the derived scattering model and antenna array configurations, the MIMO channel is computed using a ray-based method. Simulations of several MIMO channels are shown to exhibit experimentally observed channel correlations, antenna beamwidth effect, range dependency, and frequency selectivity.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 5 )