By Topic

Identification and control of continuous-time nonlinear systems via dynamic neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
X. M. Ren ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; A. B. Rad ; P. T. Chan ; Wai Lun Lo

In this paper, we present an algorithm for the online identification and adaptive control of a class of continuous-time nonlinear systems via dynamic neural networks. The plant considered is an unknown multi-input/multi-output continuous-time higher order nonlinear system. The control scheme includes two parts: a dynamic neural network is employed to perform system identification and a controller based on the proposed dynamic neural network is developed to track a reference trajectory. Stability analysis for the identification and the tracking errors is performed by means of Lyapunov stability criterion. Finally, we illustrate the effectiveness of these methods by computer simulations of the Duffing chaotic system and one-link rigid robot manipulator. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for control of unknown continuous-time nonlinear systems with output disturbance noise.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:50 ,  Issue: 3 )