By Topic

Thermal transport properties of gold-covered thin-film silicon dioxide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Burzo, M.G. ; Mech. Eng. Dept., Southern Methodist Univ., Dallas, TX, USA ; Komarov, P.L. ; Raad, P.E.

Due to continued miniaturization, the performance and reliability of electronic devices composed of multiple thin layers of material are highly dependent on effective thermal management. Since the thermal properties of thin films, such as SiO2, can vary considerably from bulk values, the determination of those properties (as well as the interface resistance between SiO2 and adjacent layers) is critical for the purposes of design. In this work, a transient thermo-reflectance system has been employed to measure the thermal characteristics of thin-film SiO2 layers. Results show that for layers of SiO2 in the range of 100-1000 Å, the intrinsic thermal conductivity (TC) is independent of thickness and smaller than the traditionally reported value of bulk silicon dioxide (1.4 W/m-K). The intrinsic value was measured to be around 90% (1.27 W/m-k) and 75% (1.05 W/m-k) of the latter bulk value for thermally grown (TG) and ion beam sputtered (IBS) oxides, respectively. The thermal interface resistances of TG and IBS SiO2 films were measured at 1.68 × 10-8 m2-K/W and 2.58 × 10-8 m2-K/W, respectively. If a chromium film of around 100 Å is deposited between the gold and SiO2 layers, the interface thermal resistance improves to 0.78 × 10-8 m2-K/W for TG films and 1.15 × 10-8 m2-K/W for IBS films. Thus, the effective thermal resistance of SiO2 thin-films (i.e., with interface effects) is up to one order of magnitude smaller than the values reported for bulk SiO2.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:26 ,  Issue: 1 )