By Topic

Energy and performance models for clocked and asynchronous communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stevens, K.S. ; Strategic CAD Labs., Intel Corp., Hillsboro, OR, USA

Parameterized first-order models for throughput, energy, and bandwidth are presented in this paper. Models are developed for many common pipeline methodologies, including clocked flopped, clocked time-borrowing latch protocols, asynchronous two-cycle, four-cycle, delay-insensitive, and source synchronous. The paper focuses on communication costs which have the potential to throttle design performance as scaling continues. The models can also be applied to logic. The equations share common parameters to allow apples-to-apples comparisons against different design targets and pipeline methodologies. By applying the parameters to various design targets, one can determine when unclocked communication is superior at the physical level to clocked communication in terms of energy for a given bandwidth. Comparisons between protocols at fixed targets also allow designers to understand tradeoffs between implementations that have a varying degree of timing assumptions and design requirements.

Published in:

Asynchronous Circuits and Systems, 2003. Proceedings. Ninth International Symposium on

Date of Conference:

12-15 May 2003