By Topic

A dynamic system regulation measure for increasing effective capacity: the X-factor theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Delp ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; J. Si ; Y. Hwang ; B. Pei

Due to the complex nature of semiconductor manufacturing it is evident that a single scheduling or regulation technique cannot best optimize the system dynamics for reducing cycle time and increasing throughput. The throughput of the system can increase to the effective capacity level of the system. When the throughput of the system approaches the effective capacity the product cycle time can dramatically increase. The "knee" of the performance curve indicates an operating point for fabs to maximize throughput while keeping the product cycle time relatively low. By increasing the effective capacity, i.e. adding a machine or improving a process, the product cycle time can be lowered or the system throughput increased by producing a shift in the "knee" of the performance curve. The bottleneck, typically defined as the most heavily utilized machine group, is often the target for increasing the system effective capacity. We will analyze the bottleneck along with other system capacity regulation measures to systematically study the relationship between bottleneck, X-factor, cycle time, and throughput measurements.

Published in:

Advanced Semiconductor Manufacturing Conference and Workshop, 2003 IEEEI/SEMI

Date of Conference:

31 March-1 April 2003