By Topic

Histological image retrieval based on semantic content analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tang, H.L. ; Dept. of Comput., Univ. of Surrey, UK ; Hanka, R. ; Ip, H.H.S.

The demand for automatic recognition and retrieval of medical images for screening, reference, and management is increasing. We present an intelligent content-based image retrieval system called I-Browse, which integrates both iconic and semantic content for histological image analysis. The I-Browse system combines low-level image processing technology with high-level semantic analysis of medical image content through different processing modules in the proposed system architecture. Similarity measures are proposed and their performance is evaluated. Furthermore, as a byproduct of semantic analysis, I-Browse allows textual annotations to be generated for unknown images. As an image browser, apart from retrieving images by image example, it also supports query by natural language.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:7 ,  Issue: 1 )