By Topic

An evolutionary approach to the design of controllable cellular automata structure for random number generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng-Uei Guan ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Shu Zhang

Cellular automata (CA) has been used in pseudorandom number generation for over a decade. Recent studies show that two-dimensional (2-D) CA pseudorandom number generators (PRNGs) may generate better random sequences than conventional one-dimensional (1-D) CA PRNGs, but they are more complex to implement in hardware than 1-D CA PRNGs. In this paper, we propose a new class of 1-D CA - controllable cellular automata (CCA)-without much deviation from the structural simplicity of conventional 1-D CA. We first give a general definition of CCA and then introduce two types of CCA: CCA0 and CCA2. Our initial study shows that these two CCA PRNGs have better randomness quality than conventional 1-D CA PRNGs, but that their randomness is affected by their structures. To find good CCA0/CCA2 structures for pseudorandom number generation, we evolve them using evolutionary multiobjective optimization techniques. Three different algorithms are presented. One makes use of an aggregation function; the other two are based on the vector-evaluated genetic algorithm. Evolution results show that these three algorithms all perform well. Applying a set of randomness tests on the evolved CCA PRNGs, we demonstrate that their randomness is better than that of 1-D CA PRNGs and can be comparable to that of 2-D CA PRNGs.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 1 )