By Topic

An analysis of the behavior of simplified evolutionary algorithms on trap functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nijssen, S. ; Leiden Inst. of Adv. Comput. Sci., Leiden Univ., Netherlands ; Back, T.

Methods are developed to numerically analyze an evolutionary algorithm (EA) that applies mutation and selection on a bit-string representation to find the optimum for a bimodal unitation function called a trap function. This research bridges part of the gap between the existing convergence velocity analysis of strictly unimodal functions and global convergence results assuming the limit of infinite time. As a main result of this analysis, a new so-called (1 : λ)-EA is proposed, which generates offspring using individual mutation rates pi. While a more traditional EA using only one mutation rate is not able to find the global optimum of the trap function within an acceptable (nonexponential) time, our numerical investigations provide evidence that the new algorithm overcomes these limitations. The analysis tools used for the analysis, based on absorbing Markov chains and the calculation of transition probabilities, are demonstrated to provide an intuitive and useful method for investigating the capabilities of EAs to bridge the gap between a local and a global optimum in bimodal search spaces.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 1 )