By Topic

Moore's law lives on [CMOS transistors]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chang, L. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Choi, Yang-Kyu ; Kedzierski, J. ; Lindert, N.
more authors

We discuss several device structures suitable for scaling CMOS devices well into the nano-CMOS era, perhaps down below 10 nm physical gate length. The ultra-thin body MOSFET device structure has many features in common with today's bulk MOSFET, which makes it easier for industry to introduce into manufacturing. On the other hand, the double-gate structure as represented by the FinFET appears to offer greater scalability down to 10 nm gate length or perhaps even below. While a number of significant challenges remain to be overcome, including device parasitics, interfaces, and threshold voltage control techniques, it appears that the continued evolution of CMOS integrated circuit technology into this regime will not be impeded by basic limitations of the underlying transistor technology. The implication of this is that "Moore's law" may continue for yet another 15-20 years before the ultimate device limits for CMOS are reached.

Published in:

Circuits and Devices Magazine, IEEE  (Volume:19 ,  Issue: 1 )