Cart (Loading....) | Create Account
Close category search window
 

Resynthesis of multi-level circuits under tight constraints using symbolic optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kravets, V.N. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Sakallah, K.A.

We apply recently introduced constructive multi-level synthesis in the resynthesis loop, targeting convergence of industrial designs. The incremental ability of the resynthesis approach allows more predictable circuit implementations while allowing their aggressive optimization. The approach is based on a very general symbolic decomposition template for logic synthesis that uses information-theoretical properties of a function to infer its decomposition patterns (rather than more conventional measures such as literal counts). Using this template the decomposition is done in a Boolean domain unrestricted by the representation of a function, enabling superior implementation choices driven by additional technological constraints. The symbolic optimization is applied in resynthesis of industrial circuits which have tight timing constraints yielding their much improved timing properties.

Published in:

Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on

Date of Conference:

10-14 Nov. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.