By Topic

High-level synthesis of distributed logic-memory architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao Huang ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Ravi, S. ; Raghunathan, A. ; Jha, N.K.

With the increasing cost of global communication on-chip, high-performance designs for data-intensive applications require architectures that distribute hardware resources (computing logic, memories, interconnect, etc.) throughout a chip, while restricting computations and communications to geographic proximities. In this paper, we present a methodology for high-level synthesis (HLS) of distributed logic-memory architectures, i.e., architectures that have logic and memory distributed across several partitions in a chip. Conventional HLS tools are capable of extracting parallelism from a behavior for architectures that assume a monolithic controller/datapath communicating with a memory or memory hierarchy. This work provides techniques to extend the synthesis frontier to more general architectures that can extract both coarse- and fine-grained parallelism from data accesses and computations in a synergistic manner. Our methodology selects many possible ways of organizing data and computations, carefully examines the trade-offs (i.e., communication overheads, synchronization costs, area overheads) in choosing one solution over another, and utilizes conventional HLS techniques for intermediate steps. We have evaluated the proposed framework on several benchmarks by generating register-transfer level (RTL) implementations using an existing commercial HLS tool with and without our enhancements, and by subjecting the resulting RTL circuits to logic synthesis and layout. The results show that circuits designed as distributed logic-memory architectures using our framework achieve significant (up to 5.31×, average of 3.45×) performance improvements over well-optimized conventional designs with small area overheads (up to 19.3%, 15.1% on average).

Published in:

Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on

Date of Conference:

10-14 Nov. 2002