Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Robust ML wideband beamformingin reverberant fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Di Claudio, E.D. ; INFOCOM Dept., Univ. of Rome La Sapienza, Italy ; Parisi, R.

Adaptive beamforming of sensor arrays immersed into reverberant fields can easily result in the cancellation of the useful signal because of the temporal correlation existing among the direct and the reflected path signals. Wideband beamforming can somewhat mitigate this phenomenon, but adaptive solutions based on the minimum variance (MV) criterion remain nonrobust in many practical applications, such as multimedia systems, underwater acoustics, and seismic prospecting. In this paper, a steered wideband adaptive beamformer, optimized by a novel concentrated maximum likelihood (ML) criterion in the frequency domain, is presented and discussed in the light of a very general reverberation model. It is shown that ML beamforming can alleviate the typical cancellation problems encountered by adaptive MV beamforming and preserve the intelligibility of a wideband and colored source signal under interference, reverberation, and propagation mismatches. The difficult optimization of the ML cost function, which incorporates a robustness constraint to prevent signal cancellation, is recast as an iterative least squares problem through the concept of descent in the neuron space, which was originally developed for the training of multilayer neural networks. Finally, experiments with computer-generated and real-world data demonstrate the superior performance of the proposed beamformer with respect to its MV counterpart.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 2 )