By Topic

Three-dimensional reconstruction from projections with incomplete and noisy data by object estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Bresler ; Stanford University, Stanford, CA ; A. Macovski

An estimation approach to three-dimensional reconstruction from parallel ray projections, with incomplete and very noisy data, is described. Using a stochastic dynamic model for an object of interest in a probed domain of known background density, the reconstruction problem is reformulated as a n onlinear state estimation problem. An approximate minimum mean square error globally optimal algorithm for the solution of this problem is presented. The algorithm, which is recursive in a hybrid frequency-space domain, operates directly on the Fourier transformed projection data, eliminating altogether the attempt to invert the projection integral equation. The simulation example considered in this paper demonstrates that good object estimates may be obtained with as few as five views in a limited sector of 90° and at a signal-to-noise ratio as low as 0 dB.

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:35 ,  Issue: 8 )