By Topic

Morphological filters--Part II: Their relations to median, order-statistic, and stack filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maragos, P. ; Harvard University, Cambridge, MA ; Schafer, R.W.

This paper extends the theory of median, order-statistic (OS), and stack filters by using mathematical morphology to analyze them and by relating them to those morphological erosions, dilations, openings, closings, and open-closings that commute with thresholding. The max-min representation of OS filters is introduced by showing that any median or other OS filter is equal to a maximum of erosions (moving local minima) and also to a minimum of dilations (moving local maxima). Thus, OS filters can be computed by a closed formula that involves a max-min on prespecified sets of numbers and no sorting. Stack filters are established as the class of filters that are composed exactly of a finite number of max-min operations. The kernels of median, OS, and stack filters are collections of input signals that uniquely represent these filters due to their translation-invariance. The max-min functional definitions of these nonlinear iliters is shown to be equivalent to a maximum of erosions by minimal (with respect to a signal ordering) kernel elements, and also to a minimum of dilations by minimal kernel elements of dual filters. The representation of stack filters based on their minimal kernel elements is proven to be equivalent to their representation based on irreducible sum-of-products expressions of Boolean functions. It is also shown that median filtering (and its iterations) of any signal by convex 1-D windows is bounded below by openings and above by closings; a signal is a root (fixed point) of the median iff it is a root of both an opening and a closing; the open-closing and clos-opening yield median roots in one pass, suppress impulse noise similarly to the median, can discriminate between positive and negative noise impulses, and are computationally less complex than the median. Some similar results are obtained for 2-D median filtering.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:35 ,  Issue: 8 )