Cart (Loading....) | Create Account
Close category search window
 

Windowed fast transversal filters adaptive algorithms with normalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cioffi, J.M. ; IBM Research Laboratory, San Jose, CA ; Kailath, T.

New fixed-order fast transversal filter (FTF) algorithms are introduced for several common windowed recursive-least-squares (RLS) adaptive-filtering criteria. O(N) operations per data point, where N is the filter order, are required by the new algorithms. These algorithms are characterized by two different time-variant scaling techniques that are applied to the internal quantities, leading to normalized and over-normalized FTF algorithms. It is this scaling that distinguishes the new algorithms from the multitude of fast-RLS-Kalman or fast-RLS-Kalman-type algorithms that have appeared in the literature for these same windowed RLS criteria, and which use no normalization or scaling of the internal algorithmic quantities. The overnormalized fast transversal filters have the lowest possible computational requirements for any of the considered windows. The normalized FTF algorithms are then introduced, at a modest increase in computational requirements, to significantly mitigate the numerical deficiencies inherent in all most-efficient RLS solutions, thus illustrating an interesting and important tradeoff between the growth rate of numerical errors and computational requirements for all fixed-order algorithms. Performance of the algorithms, as well as some illustrative tracking comparisons for the various windows, is verified via simulation.

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:33 ,  Issue: 3 )

Date of Publication:

Jun 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.