Cart (Loading....) | Create Account
Close category search window
 

An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mingbo Liu ; Centre for Intelligent Design, Autom. & Manuf., City Univ. of Hong Kong, China ; Tso, S.K. ; Ying Cheng

This paper presents a new algorithm for reactive-power optimization of large-scale power systems involving both discrete and continuous variables. This algorithm realizes successive discretization of the discrete control variables in the optimization process by incorporating a penalty function into the nonlinear primal-dual interior-point algorithm. The principle of handling these discrete variables by the penalty function, the timing of introducing the penalty function during iterations, and the setting of penalty factors are discussed in detail. To solve the high-dimension linear correction equation speedily and efficiently in each iteration, a novel data structure rearrangement is proposed. Compared with the existing data structures, it can effectively reduce the number of nonzero fill-in elements and does not give rise to difficulty in triangular factorization. The numerical results of test systems that range in size from 14 to 538 buses have shown that the proposed method can give nearly optimum solutions, has good convergence, and is suitable for large-scale system applications.

Published in:

Power Systems, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.