By Topic

High-Level Modulation and Coding for Nonlinear Satellite Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Biglieri, Ezio ; Dipartimento di Elettronica,Politecnico di Torino,Italy

Currently, 4-PSK is the prevalent modulation format in use for digital satellite communications. To improve bandwidth efficiency, 8PSK could be used instead, but a higher power would be needed; to improve power efficiency, error-correcting codes could be used, but at the expense of a larger bandwidth. Recently, Ungerboeck [1] has proposed a class of codes in which a constellation of 2M signals is used to transmit information at the rate of \log _{2} M bits per symbol, and has shown that coding gains of up to several decibels can be achieved on the additive white Gaussian noise (AWGN) channel with no increase in bandwidth occupancy and a relatively small added complexity. Thus, these codes seem to be particularly attractive for application in the band-limited environment typical of satellite communication systems, provided that the performance gain that they provide on the AWGN channel is not lost over a satellite channel. The goal of this work is to assess the performance of this class of codes when used to transmit 3 information bits per symbol on a band-limited, nonlinear satellite channel. Three modulation formats are considered, namely 16-PSK, 16-QAM, and a 16-ary amplitude-phase keying scheme with two amplitude levels. It is found that 16-PSK outperforms the two other modulation formats, and that the use of these codes can provide a substantial performance improvement even on a satellite channel.

Published in:

Communications, IEEE Transactions on  (Volume:32 ,  Issue: 5 )