By Topic

Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lenz, R.K. ; IBM T. J. Watson Research Center Yorktown Heights, NY. ; Tsai, R.Y.

This paper describes techniques for calibrating certain intrinsic camera parameters for machine vision. The parameters to be calibrated are the horizontal scale factor, i.e. the factor that relates the sensor element spacing of a discrete array camera to the picture element spacing after sampling by the image acquisition circuitry, and the image center, i.e. the intersection of the optical axis with the camera sensor. The scale factor calibration uses a 1D-FFT and is accurate and efficient. It also permits the use of only one coplanar set of calibration points for general camera calibration. Three groups of techniques for center calibration are presented: Group I requires using a laser and a four-degree of freedom adjustment of its orientation, but is simplest in concept, and is accurate and reproducible. Group II is simple to perform, but is less accurate than the other two. The most general Group III is accurate and efficient, but requires accurate image feature extraction of calibration points with known 3D coordinates. A feasible setup is described. Results of real experiments are presented and compared with theoretical predictions. Accuracy and reproducibility of the calibrated parameters are reported, as well as the improvement in actual 3D measurement due to center calibration.

Published in:

Robotics and Automation. Proceedings. 1987 IEEE International Conference on  (Volume:4 )

Date of Conference:

Mar 1987