By Topic

On terrain acquisition by a finite-sized mobile robot in plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rao, N.S.V. ; Louisiana State University, Baton Rouge, LA ; Iyengar, S.S. ; Jorgensen, C. ; Weisbin, C.R.

The terrain acquisition problem deals with the acquisition of the complete obstacle terrain model by a mobile robot placed in an unexplored terrain. This is a precursory problem to many well-known find-path and related problems which assume the availability of the complete terrain model. In this paper, we present a method for terrain acquisition by a finite-sized robot operating in plane populated by an unknown (but, finite) number of polygonal obstacles; each obstacle is arbitrarily located and has unknown (but, finite) number of vertices. The robot progressively explores newer vertices of the obstacles using sensor equipment. We show that the complete terrain model will be built by the robot in a finite time. We also show that at any point of time the partially acquired terrain suffices for the navigation of the robot during the exploration. Hence we conclude that the navigation techniques for known terrains can be applied for the robot navigation during exploration.

Published in:

Robotics and Automation. Proceedings. 1987 IEEE International Conference on  (Volume:4 )

Date of Conference:

Mar 1987