By Topic

On the optimal control of robotic manipulators with actuator and end-effector constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiller, Z. ; Massachusetts Institute of Technology Cambridge, MA ; Dubowsky, S.

The motion of current industrial manipulators is typically controlled so that tasks are not done in a minimum time optimal manner. The result is substantially lower productivity than that potentially possible. Recently a computationally efficient algorithm has been developed to find the true minimum time optimal motion for a manipulator moving along a specified path in space that uses both the full nonlinear dynamic character of the manipulator and the constraints imposed by its actuators. A Computer Aided Design (CAD) implementation of the algorithm called OPTARM is described which can treat practically general six degree-of-freedom manipulators. Examples are presented which show OPTARM to be a useful design tool for manipulators, their tasks and work places. The algorithm is extended in OPTARM to include the constraints imposed by manipulator payloads and end-effectors.

Published in:

Robotics and Automation. Proceedings. 1985 IEEE International Conference on  (Volume:2 )

Date of Conference:

Mar 1985