Cart (Loading....) | Create Account
Close category search window
 

A method for the design of hybrid position/Force controllers for manipulators constrained by contact with the environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
West, Harry ; Massachusetts Institute of Technology, Cambridge, Massachusetts ; Asada, H.

A new method for the design of hybrid position/force controllers for constrained manipulators is derived. This method can be applied to all types of constraint due to contact with the environmcnt; including constraint due to contact at the end effector, constraint due to more than one robot manipulating a workpiece, and constraint due to the bracing of a robot arm against a work surface. The manipulator and its contact with the environment are modeled in terms of lower order pairs. From this model a general equation describing the constraint on the motion of the arm is derived. The task is modeled as a set of essential position vectors and a set of essential force vectors. A hybrid position/force controller is derived to control the position and force at the joints of a manipulator such that the motion of the the robot conforms to the constraints imposed on it due to contact with the environment; and the motion at the end effector, and the force at the contact with the environment are those required for the performance of the task. The method is illustrated by a simple three degree of freedom example.

Published in:

Robotics and Automation. Proceedings. 1985 IEEE International Conference on  (Volume:2 )

Date of Conference:

Mar 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.