By Topic

Superconductive delay-line technology and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Withers ; Massachusetts Institute of Technology, Lexington, Massachusetts ; A. Anderson ; J. Green ; S. Reible

Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz bandwidths. Relative side-lobe levels of -26 dB and less are currently obtained. The achievable dispersion for stripline circuits on a single pair of 5-cm-diameter, 125-μm-thick wafers is limited to about 40 ns by the electro-magnetic coupling between neighboring lines. To achieve greater dispersion two approaches are under development: (1) Stripline circuits are being fabricated on multiple wafer pairs which are physically stacked and electrically concatenated to produce dispersive delay lines with 4-GHz bandwidth and 75-ns dispersion time. Phenolic resin is used as an adhesive to ensure the mechanical integrity of the stacked structure. (2) A technique to fabricate dense stripline circuits on very thin (15-μm) single-crystal silicon superstrates supported by thicker substrates has been demonstrated and preliminary results will be described. A chirp-transform system capable of real-time spectral analysis has been constructed using a pair of the superconductive delay-line filters. A resolution of 43 MHz over an unprecedented 2400-MHz bandwidth with amplitude uniformity of ±1 dB and side-lobe levels of -18 dB was demonstrated.

Published in:

IEEE Transactions on Magnetics  (Volume:21 ,  Issue: 2 )