By Topic

An efficient spatial prediction-based image compression scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-Hwa Kuo ; Dept. of Comput. Sci. & Inf. Eng., Tamkang Univ., Taipei, Taiwan ; Tzu-Chuan Chou ; Tay-Shen Wang

We have designed a spatial prediction-based image-compression scheme. The proposed scheme consists of two phases: the prediction phase and the quantization phase. In the prediction phase, a hierarchical structure among pixels in the image is built. Following the constructed hierarchical structure, the neighboring pixels are utilized to predict every central pixel. The prediction scheme generates an image map which indicates the prediction errors. The structure of the resulting image map is very similar to the result of a discrete wavelet transform. Thus, most quantization methods of wavelet or subband image-compression algorithms can be followed in our scheme directly to yield good compression performance. In the quantization phase, we design a multilevel threshold scheme to further enhance the result of SPIHT by taking the significance of the pixel values and the hierarchical levels into account. Furthermore, the proposed scheme can be realized by only a few integer additions and bit shifts. Simulation results indicate that the visual quality of the designed efficient spatial prediction-based image compression scheme is competitive with JPEG. All the above features make the designed image-compression scheme beneficial to the applications of real-time and wireless transmission in low-computational power environments.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:12 ,  Issue: 10 )