By Topic

Modeling integrated injection logic (I/sup 2/L) performance and operational limits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A new user-oriented I/SUP 2/L macromodel is presented which models I/SUP 2/L performance and predicts operational limits. The macromodel includes n-p-n current gain falloff and injector transport efficiency falloff at both low and high operating currents. Lateral current transfer between adjacent gates may be included in the macromodel. A straightforward parameter measurement scheme is given which requires only simple test gates. The macromodel is easily implemented in commonly available circuit simulators such as SPICE. The modeling of I/SUP 2/L dynamic behavior is demonstrated with computer simulations of a five-stage ring oscillator and `D' flip-flop, where typically 15 percent or better agreement with measured data has been achieved. It is also shown that operational limits of I/SUP 2/L circuits can be accurately predicted. Computer simulation of I/SUP 2/L performance as a function of temperature is discussed. The macromodel is well suited for worst case analysis of I/SUP 2/L, and the close correspondence of the macromodel's parameters to gate geometry makes it possible to use the macromodel to approximately simulate performance changes with layout and geometry variations.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:12 ,  Issue: 5 )