By Topic

Local reasoning and knowledge compilation for efficient temporal abduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Console ; Dipt. di Informatica, Torino Univ., Italy ; P. Terenziani ; D. T. Dupre

Generating abductive explanations is the basis of several problem solving activities such as diagnosis, planning, and interpretation. Temporal abduction means generating explanations that do not only account for the presence of observations, but also for temporal information on them, based on temporal knowledge in the domain theory. We focus on the case where such a theory contains temporal constraints that are required to be consistent with temporal information on observations. Our aim is to propose efficient algorithms for computing temporal abductive explanations. Temporal constraints in the theory and in the observations can be used actively by an abductive reasoner in order to prune inconsistent candidate explanations at an early stage during their generation. However, checking temporal constraint satisfaction frequently generates some overhead. We analyze two incremental ways of making this process efficient. First we show how, using a specific class of temporal constraints (which is expressive enough for many applications), such an overhead can be reduced significantly, yet preserving a full pruning power. In general, the approach does not affect the asymptotic complexity of the problem, but it provides significant advantages in practical cases. We also show that, for some special classes of theories, the asymptotic complexity is also reduced. We then show how, compiled knowledge based on temporal information, can be used to further improve the computation, thus, extending to the temporal framework previous results in the case of atemporal abduction. The paper provides both analytic and experimental evaluations of the computational advantages provided by our approaches.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:14 ,  Issue: 6 )