By Topic

Digital stochastic realization of complex analog controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marin, S.L.T. ; Dept. of Electron. Eng., Seville Univ., Spain ; Reboul, J.M.Q. ; Franquelo, L.G.

Stochastic logic is based on digital processing of a random pulse stream, where the information is codified as the probability of a high level in a finite sequence. This binary pulse sequence can be digitally processed exploiting the similarity between Boolean algebra and statistical algebra. Given a random pulse sequence, any Boolean operation among individual pulses will correspond to an algebraic expression among the variables represented by their respective average pulse rates. Subsequently, this pulse stream can be digitally processed to perform analog operations. In this paper, we propose a stochastic approach to the digital implementation of complex controllers using programmable devices as an alternative to traditional digital signal processors. As an example, a practical realization of nonlinear dissipative controllers for a series resonant converter is presented.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:49 ,  Issue: 5 )