By Topic

A comparison of high-power converter topologies for the implementation of FACTS controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soto, D. ; Electr. Eng. Dept., Univ. de Magallanes, Punta Arenas, Chile ; Green, T.C.

This paper compares four power converter topologies for the implementation of flexible AC transmission system (FACTS) controllers: three multilevel topologies (multipoint clamped (MPC), chain, and nested cell) and the well-established multipulse topology. In keeping with the need to implement very-high-power inverters, switching frequency is restricted to line frequency. The study addresses device count, DC filter ratings, restrictions on voltage control, active power transfer through the DC link, and balancing of DC-link voltages. Emphasis is placed on capacitor sizing because of its impact on the cost and size of the FACTS controller. A method for the dimensioning the DC capacitor filter is presented. It is found that the chain converter is attractive for the implementation of a static compensator or a static synchronous series compensator. The MPC converter is attractive for the implementation of a unified power flow controller or an interline power flow controller, but a special arrangement is required to overcome the limitations on voltage control.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:49 ,  Issue: 5 )