By Topic

An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Di Vittorio, A.V. ; Center for Astrodynamics Res., Colorado Univ., Boulder, CO, USA ; Emery, W.J.

An operational scheme for masking cloud-contaminated pixels in Advanced Very High Resolution Radiometer (AVHRR) daytime data over land is developed, evaluated, and presented. Dynamic thresholding is used with channel 1 reflectance data, channel 3 minus channel 4 temperature difference data, and channel 4 minus channel 5 temperature difference data to automatically create a cloud mask for a single image. The dynamic thresholds can be applied in two different ways: to each pixel individually and to classes of pixels determined by an unsupervised minimum Euclidian distance classifier. The dynamic threshold cloud-masking (DTCM) algorithm presented in this study is used to produce cloud masks based on three different configurations: two channels and individual pixels, three channels and individual pixels, and three channels and classes of pixels. These cloud masks are compared with control masks that were created by visual inspection. The results from the clouds from AVHRR (CLAVR) algorithm and the cloud and surface parameter retrieval (CASPR) algorithm are also compared with the control masks. The results of the comparisons indicate that DTCM, applied on a pixel-by-pixel basis, correctly identifies more clear pixels than CASPR or CLAVR while correctly identifying a comparable or higher number of cloud-contaminated pixels.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 8 )