By Topic

Dynamics of domains and walls in soft magnetic films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Slonczewski, J.C. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

General equations are derived to describe the simultaneous nonuniform planar rotations of the magnetization vector and displacements of curved domain walls and their junctions in soft magnetic films. These equations take into account effects of exchange stiffness, magnetic anisotropy, external and either long- or short-range demagnetizing fields, wall energy, and dissipation. The case of a matched film pair using the capacitor or transmission-surface approximation for its short-range demagnetizing energy is considered. The theory is founded on energy and dissipation functionals including domain and wall terms. The constraint of wall-normal magnetization continuity across a domain wall is handled by a method of implementing d'Alembert's virtual work principle without introducing Lagrange multipliers. The result is a set of coupled equations expressing the dynamic torque balance at points inside domains, the wall-domain constraint due to wall-normal magnetization continuity, an additional boundary condition coupling domain magnetization and wall curves, and the wall velocity.

Published in:

Magnetics, IEEE Transactions on  (Volume:27 ,  Issue: 4 )