By Topic

An adaptive framework for tunable consistency and timeliness using replication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sudha Krishnamurthy ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Sanders, W.H. ; Cukier, Michel

One well-known challenge in using replication to service multiple clients concurrently is that of delivering a timely and consistent response to the clients. In this paper, we address this problem in the context of client applications that have specific temporal and consistency requirements. These applications can tolerate a certain degree of relaxed consistency, in exchange for better response time. We propose a flexible QoS model that allows these clients to specify their temporal and consistency constraints. In order to select replicas to serve these clients, we need to control of the inconsistency of the replicas, so that we have a large enough pool of replicas with the appropriate state to meet a client's timeliness, consistency, and dependability requirements. We describe an adaptive framework that uses lazy update propagation to control the replica inconsistency and employs a probabilistic approach to select replicas dynamically to service a client, based on its QoS specification. The probabilistic approach predicts the ability of a replica to meet a client's QoS specification by using the performance history collected by monitoring the replicas at runtime. We conclude with experimental results based on our implementation.

Published in:

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on

Date of Conference: